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A SYMPLECTIC DISCONTINUOUS GALERKIN FULL
DISCRETIZATION FOR STOCHASTIC MAXWELL EQUATIONS*

CHUCHU CHENT

Abstract. This paper proposes a fully discrete method called the symplectic discontinuous
Galerkin (dG) full discretization for stochastic Maxwell equations driven by additive noises, based
on a stochastic symplectic method in time and a dG method with the upwind fluxes in space. A priori
HF-regularity (k € {1,2}) estimates for the solution of stochastic Maxwell equations are presented,
which have not been reported before to the best of our knowledge. These H¥-regularities are vital to
making the assumptions of the mean-square convergence analysis on the initial fields, the noise, and
the medium coefficients, but not on the solution itself. The convergence order of the symplectic dG
full discretization is shown to be k/2 in the temporal direction and k — 1/2 in the spatial direction.
Meanwhile we reveal the small noise asymptotic behaviors of the exact and numerical solutions
via the large deviation principle, and show that the fully discrete method preserves the divergence
relations in a weak sense.
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1. Introduction. Stochastic Maxwell equations are often used to better under-
stand the role of thermodynamic fluctuations presented in the electromagnetic fields,
and to get a deeper insight regarding the propagation of electromagnetic waves in
complex media (see, e.g., [16]). A mathematically rigorous framework on the effects
of randomness has been developed in [15]. The numerical treatment of the three
dimensional stochastic Maxwell equations, even in the linear case, is a challenging
task, due to the interaction of the large scale and the randomness of the problem. In
this paper, we first discretize stochastic Maxwell equations in time via the midpoint
scheme, which inherits the stochastic symplecticity of the original continuous problem,
and subsequently in space based on a discontinuous Galerkin (dG) method combining
its attractive features on the treatment of complex geometries and composite media.

For the time-dependent stochastic Maxwell equations, there exist some works on
the construction of full discretizations, for example, multisymplectic numerical meth-
ods (cf. [7, 12]), energy-conserving methods (cf. [13]). On the rigorous error analysis
of the numerical approximations, the existing works mainly focus on the temporal
semidiscretizations (see [5, 6, 8]). It is shown in [5] that a semi-implicit Euler scheme
converges with order 1/2 in the mean-square sense, and in [8] that the exponen-
tial integrators have mean-square convergence order 1/2, when applied to stochastic
Maxwell equation with multiplicative Itd noise. Authors in [6] show that the sto-
chastic symplectic Runge-Kutta semidiscretizations are mean-square convergent with
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order 1 in the additive case. As far as we know, there are few works on the rigor-
ous error analysis of the spatio-temporal full discretizations for the time-dependent
stochastic Maxwell equations. The difficulty lies in the lack of regularity of the so-
lution in H*-norms or even in C*-norms, which depends on the spatial domain, the
medium coefficients, and the noise, etc. For example, on a cuboid, the solution of the
time-harmonic deterministic Maxwell equations only has H®-regularity for @ < 3 in
general.

In this work, we consider the approximation of the stochastic electric and magnetic
fileds E(t,z) and H(¢,z) satisfying the following stochastic Maxwell equations on a
cuboid D = (ay,af) x (ay,a3) x (a3 ,a3) C R3,

(1.1a) edE — V x Hdt = —dW,.(),  (t,x) € (0, T] x D,
(1.1b) pdH 4+ V x Edt = —dW(t),  (t,x) € (0, T] x D,
(1.1¢) V-(eE)=0, V- (uH) =0, (t,x) € (0, T] x D,
(1.1d) nxE=0, n-(uH)=0, (t,x) € (0, T] x 0D,
(1.1e) E(0,x) = Eo(x), H(0,x) = Hy(x), x €D,

where T' > 0, and n(x) denotes the outer unit normal at x € 9D. We suppose that
the medium is isotropic, which implies that the permittivity € and the permeability u
are real-valued scalar functions, i.e., €, u : D — R. Throughout this paper, we assume
the medium coefficients satisfy

(1.2) g, p € L*®(D), &, p >4 for a constant § > 0.

Here W, (t) (resp., Wi, (t)) is a Q.-Wiener (resp., Q,,-Wiener) process with respect to a
filtered probability space (Q, F, {F: }o<i<7, P) with Q. (resp., Q»,) being a symmetric,
positive definite operator with finite trace on U = L?(D)3. Moreover, W,(t) and
W, (t) are independent. The phase flow of (1.1) preserves the stochastic symplecticity
(cf. [6]), i.e., if £, u are constants, for any ¢ € [0, T], W(t) = [}, dE(t,x) AdH(t,x)dx =
w(0), P-a.s.

The solution theory of (1.1), which is crucial in the mean-square error analysis,
is presented in section 2 with certain assumptions being made on the medium coef-
ficients, the initial fields, and the noise. We restrict the Maxwell operator M on the
closed subspace V of V := L?(D)3 x L?(D)3, in order to respect all boundary con-
ditions and divergence properties. These conditions and properties are important to
get the LP(Q; C ([0, T); H'(D)®))-regularity (H!-regularity in short) for the solution
of (1.1), under the first order regularity and certain compatibility conditions of the
initial data and the noise term; see Proposition 2.1. Furthermore, we can guarantee
that the solution has H?-regularity if more assumptions on the medium coefficients,
the initial fields, and the noise are employed; see Proposition 2.2.

In order to inherit the stochastic symplectic structure, we apply the midpoint
scheme (3.1) to discretize (1.1) in time in section 3. The error is measured in L?(£2; V),
and gives a bound of order k/2 provided that the solutions of the continuous problem
(1.1) and the temporal semidiscretization (3.1) belong to the domain D(M¥) of the
kth power of the Maxwell operator M with k € {1,2} (see section 2 for notations). It
is also shown that the divergence conservation laws (1.1c) are preserved numerically
by the semidiscretization (3.1) in time.

We discretize the temporal semidiscretization (3.1) further in space using a dG
method, and then it results in the fully discrete method (5.1), called the symplectic
dG full discretization; see also section 4 for the treatment of the dG approximation of
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stochastic Maxwell equations. We refer interested readers to [17] for the application
of the dG method to the time-harmonic stochastic Maxwell equations with colored
noise, to [3] for its application to the stochastic Helmholtz-type equation, to [1] for
its application to the stochastic Allen—-Cahn equation, to [2] for its application to the
semilinear stochastic wave equation, to [14] for its application to stochastic conser-
vation laws, and to [4] for the application of a symplectic local dG method to the
stochastic Schrodinger equation. Since the highest regularity of stochastic Maxwell
equations that can be guaranteed is in H?, the dG space is taken to be the set of
piecewise linear functions. The upwind fluxes are utilized, due to the higher conver-
gence order than the central fluxes; see [11] for the deterministic case. It is shown
in Theorem 4.9 that the mean-square convergence order of the dG approximation
(4.4) is of k — 1/2 if the exact solution of (1.1) belongs to LP(Q; C([0,T]; H*(D)®))
with & € {1,2}. This convergence analysis is presented in a form applied also to
the full discretization (5.1), which is stated in section 5. We also show that the di-
vergence properties (1.1c) are preserved numerically in a weak sense by the spatial
semidiscretization (4.4) and the full discretization (5.1) in Propositions 4.7 and 5.1,
respectively. Moreover, the asymptotic behaviors of the exact and numerical solu-
tions of stochastic Maxwell equations with small noise are investigated in section 2
and sections 3-5 (including the case for the temporal semidiscretization, the spatial
semidiscretization, and the full discretization), respectively.

To conclude, the main contribution of this paper is to provide a rigorous error
analysis of a full discretization for stochastic Maxwell equations. In particular, we
prove that

(i) the exact solution and the numerical solution of the temporally semidiscrete

method belong to LP(Q; C([0,T]; H*(D)%)) with k € {1,2} depending only on
the assumptions on the medium coefficients, the initial fields, and the noise,
which have not been reported before to the best of our knowledge;

(ii) the mean-square error of the full discretization in L?(Q;V) is of order k/2 in

time and of order k —1/2 in space (k € {1,2}), which retains the convergence
order of the upwind fluxes space discretization in the deterministic case.

2. Properties of stochastic Maxwell equations. This section presents the
notations and basic results for stochastic Maxwell equations, including the stochastic
symplectic structure, the regularity in LP(Q; C([0, T); H*(D)®)) with k € {1,2}, and
the small noise asymptotic behavior. Throughout this paper, we use C to denote a
generic constant, independent of the step sizes 7 and h, which may differ from line to
line. Let I‘ji be the open faces of D given by z; = aji, respectively, for j = 1,2, 3.

2.1. Preliminaries. We first collect notations used throughout this paper. We
use the standard Sobolev spaces W*?(D) := WkP(D,R) for k € N, p € [1, 00|, where
we denote H*(D): = W*2(D). For a real number v € (0,1) and a normed real vector
space V, denote by C7([0,T];V) := {f : [0,T] — V with || f|lc(o,r);v) < oo} the
space of all y-Holder continuous functions from [0, 7] to V, where

f(t2) — f(t1)llv
flerqoman = swp If@lv+  sup SOy,
te[0,T) t1,t2€[0,T],t1#to |t2 - t1|

Stochastic Maxwell equations (1.1) are studied in the real Hilbert space V =
L?*(D)3 x L*(D)3, endowed with the inner product

<(IE{11) <Ilj:122>>V:/D(8E1'E2+MH1-Hz)dx
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for all (E{ ,H{)", (EJ,H;)" €V, and the norm

()

This space V is equivalent to the usual L?(D)® space under the assumption (1.2) on
coefficients € and p.
In addition we use the Hilbert spaces

1/2
— UD (e|E)? + p/H|?) dx vELH) eV,
\%

H(curl, D) := {v € L*(D)*: V x v € L*(D)%},
Hy(curl, D) := {v € H(curl, D) : n x v|gp = 0},

endowed with the norm

eurt = [ullZ2(pys + 1V X wlZ2(pys,

[l
and

H(div,D) :={v € L*(D)*: V-v e L*(D)},
Hy(div, D) := {v € H(div,D) : n-v|sp =0},

endowed with the norm
lullzi = lulZ2(pys + IV - ull 2 (p)-
After these preparations we introduce the Maxwell operator

-1
21) M= (—M_OIVX ¢ OVX), D(M) = Ho(curl, D) x H(curl, D)

on V. By defining u(t) = (E(t)",H(t)")T, the system (1.1) can be rewritten as a
stochastic evolution equation

(2.2) {du(t) — Mu(t)dt — dW (1),

u(0) = uyp,

where W (t) = (7' W ()T, p='W,,(t) ") is a Q-Wiener process on V with

_(e7'Q. 0
Q‘( 0 ulczm)'

In fact, for any a = (a] ;a3 )", b= (b{,b] )" € V, we have

E [<W(t)’ a>V<W(t)’ b>V]
=E[((We(t), a1)r + (Wi (t), a2)v) ((We(t), br)u + (Win(t), ba)v)]
= t{Qca1,b1)v + t(Qmaz, b2)y = t(Qa, b)v.

1 1 . .
Note that B[W(t)|3 = t(|e2 Q3500 + In 2 Q&3 s00)), and Q still is a

1
symmetric, positive definite operator on V with trace Tr(Q) = (|le 2 Q2 ”?’-IS(U o)+
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Hu_%QiH%{S(U ry)- Here HS(U, H) denotes the space of all Hilbert—Schmidt op-
erators from one separable Hilbert space U to another separable Hilbert space H,
equipped with the inner product (I'y, '2) s, i) = 250:1 (T'1n;,Ton;) g and the norm
T asw,.my = (352, ITn;112,) /2, where {n;};en is an orthonormal basis of U. Tt is
not difficult to show that the energy of the system (1.1) evolves with a rate Tr(Q),
ie., Eu(®)[2 = Elluol3 + Tr(Q).

Note that (2.2) is an infinite dimensional Hamiltonian system. If the coefficients
€, v are constants, the canonical form of the infinite dimensional Hamiltonian system
of (2.2) reads as

_10H _10Hy _ 67{2
(2.3) du(t) =17 —udtﬂl TdW +J7! N AW,

0 I
= o)
with I3 being the identity matrix on R3*3, W, = (0T, W.))T, W,, = (W, ,0T)T,
and H = —1 [, (0 'E- (VxE)+c'H- (VxH))dx Hy = [pe ’1de Ho =
— f D p~'Edx. The phase flow of (2.3) preserves the stochastic symplecticity, i.e., for
any t € [0,T], w(t) = [, dE(t,x) AdH(t, x)dx, P-a.s. We refer to [6] for the discussion
on the symplecticity of stochastic Maxwell equations and the numerical preservation
of the symplecticity by these semidiscrete methods in time.

The domain D(M) includes the electric boundary condition, but neither the mag-
netic boundary condition nor the divergence conditions. In order to regard all con-
ditions, we define Vo := {(ET)H")T € V: V.(¢E) = V. (uH) =0, n- (uH) =
0 on OD}, which is a closed subspace of V with the inner product and norm being
defined the same as in V. We mainly work with the restriction My of M on Vj. It
is known that under (1.2), My : D(My) = D(M) NVy — Vy is skew adjoint, and
thus generates a unitary Cp-group {S(t)}ier on Vo. Denote by D(M*) := {u €
D(M*=1) : Mk=1y € D(M)} the domain of the kth power of M for k € Ny := N\{0}
with norm [Jullparey = ([|ull?; + ||MkuH%I)1/2. Since M maps D(M) into Vg, we
have D(MEF) = D(M*) NV, (cf. [10]).

2.2. H'-regularity. The H'-regularity of the solution is deduced by utiliz-
ing the fact that v € H(curl, D) N H(div, D) belongs to H'(D)? if v x n = 0 or
v-n = 0 holds on dD. Moreover, the H'-norm of v is dominated by |[[v| g1 (py: <
C (vllz2(pyz + IV x v||2(pyz + ||V - v||L2(p)) , where the constant C' depends on the
space domain D. Since V - (¢éE) = 0, we get that V-E = V- (e7'¢E) = 7'V -
(eE) + V(e71) - (eE) = —e~ Ve - E belongs to L?(D)? if ¢ € WH*(D) with ¢ > §
for a constant § > 0, and analogously for H. That means that ||V - El/z2py + ||V -
H||L2(D) § 0(5, ||€||W1,oo(D), ||ILLHWL<X>(D))||(E,H)||L2(D)6. Hence, D(Mo) = D(M) n
Vo < HY(D)S, if coefficients ¢, u satisfy the assumptions above. Moreover,

(2.4) (B, H)|[zr1(pys < C||(E,H)|[p(az)
with C:= C(3, |lellw.(py, [lullwr<(p))-

PROPOSITION 2.1. Let the assumption (1.2) hold, and let Q2 € HS(V, D(Mj))
and ug € LP(;D(My)) for some p > 2. Then (2.2) has a unique solution u €
LP(; C([0,T);D(Mo))) given by

(2.5) u(t) = S(t)ug — /0 S(t— s)dW(s),

where
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where u also belongs to C=([0,T); LP( V). Assume further that e, u € Wh>(D),
then

26) 5| sup (Ol | < CE| sup JulOun, | < OO+ Ellually, )
t€[0,T] t€[0,T7]

where C' depends on T, 6, |l|lwr.c(py, ||ptllw.o(py, and ||Q%||HS(V7 D(Mp))-

Proof. Since My generates a unitary Cy-group {S(¢) }rer on Vo, the existence and
uniqueness of the mild solution u(t) of (2.5) on Vj follows. The estimate on stochastic
convolution yields

=

1
E( s lot0lpn)] " < [EQluolbo,)]

@7+ []E( sup]H/otS(t—s)dW(s)H

telo,T

)F <1+ [Eluolin)]):

P
D(Mo)

where the constant C' depends on T and || Q2 | ezs v, D(Mo))-
Based on [5, Lemma 3.3] and (2.7), for any 0 < s < ¢ < T, we get

/s t St — r)dW ()

[u(t) = u(s)|| Lo @ve) < (S = 5) = I)u(s)||Lr@uve) + ‘
Lr (Vo)

< C(1 + |[uo|| o spany )t — 8) + C(t — s)2,
which leads to

ut) —w(s)llLr(0; vo)

= . <C.
Il oy vy = Sy 1Ol v g = g < €
Utilizing the embedding (2.4), the assertion (2.6) follows from (2.7). O

2.3. HZ2-regularity. In our error analysis we need the solution u of (2.2) tak-
ing values in H?(D)%, which relies on additional regularity properties of D(MZ) =
D(M?) NV, and some smoothness of coefficients ¢ and p. Assume that

(2.8) e, € WH(D)NW?23(D) with e, > § for a constant § > 0.
In fact, for any w = (ET,H")T € D(MZ), we already have w € H'(D)® from (2.4).
Further,
- 1V x (VX E
MZw = ( ) € L*(D)°,
—u IV x (e7'V x H)
and the properties of the curl operator lead to

AE =-V x (VxE)+V(V-E)
=—puV x (u'VXE)—p 'Vux (VxE)—-V('Ve-E) € L*(D)?,
if coefficients e, p satisfy (2.8). Then the H2-regularity of E follows from the equiva-

lence of the H?-norm and the graph norm of Laplacian A on D under certain mixed
boundary conditions, i.e., if there is a unique function v € H} (D) solving

/Dvgﬁdx+/DVv-V¢dx:/Df¢dx
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for f € L?(D) and V¢ € HL(D), then the solution v € H?(D) N HE(D) satisfies
v—Av = fon D, dyv =0 on ID\I', and [[v||gz2py < C (|[v]lz2(p) + [|AV] L2(p))
with the constant C depending on D. Here for a union I' C 9D of some faces of D,
HL(D) := {v € HY(D)| tr(v) =0onT}. For each component E; (resp., H;) of E
(resp., H), the boundary I may be taken as F UF (resp., F ) Wlth Jk,0€{1,2,3}
and k # ¢ # j. We refer to [10] for more detaﬂs

PROPOSITION 2.2. Let Q= € HS(V,D(MZ)) and ug € LP(Q;D(MZ)) for some
p > 2. Under the assumption (2.8), the solution (2.5) has the following property,

29) | sup [0l eqoye] < CE[ sup [y | < 0O+ Eluollyy)
t€[0,7] t€[0,7]
where C depends on T, 0, |lellwr.py, llellw2spy, llullwrepy, llulw2smpy, and
Q= lzrs(v, D(a2)) -
Proof. We first prove the D(M§@)-regularity of the solution. From (2.5), we get

3=

1
(2.10) {E(tes[l(l)lf;] ||U(t)H%(Mg))} "< [E(HUOH%(MS))}

o s | [ s-snawlf, )] <o (1 [Blmlg)] ).

where the constant C' depends on T and [|Q2 | zs(v, D(M2))-
The first inequality in (2.9) comes from the embedding D(Mg) — H?(D)S. Thus
the proof is finished by combining (2.10). |

2.4. Small noise asymptotic behavior. We scale the noise in the system (2.2)
by a small parameter VA, A € R, i.e

{du(t) = Mu(t)dt — VAW (),

(2.11) u(0) = o,

whose mild solution is given by u®°: )‘( ) = S(t)up — ffo (t — r)dW (r). Denote

the stochastic convolution by Wy (t fo r)dW (r). Then for arbitrary T > 0,
WM( ) is Gaussian on V with mean 0 and covariance operator Qr := COV(WM (T)) =
i S(rQS* (r)dr

LEMMA 2.3 (see [9, Proposition 12.10]). Assume that X is a Gaussian random

variable with distribution p = ./\/'(O,@) on a Hilbert space H. Then the family of
random variables {X\ = VAX}xso (or measures {HA = L(XA)}/\>0) satisfies the
large deviation principle with the good rate function

HQ 2al}, @ e Qr(H),

400, otherwise,

(2.12) I(z) =

where éfé is the pseudoinverse of @%.

Based on Lemma 2.3, we get the following asymptotic behavior of the solution for
(2.11) with a small diffusion coefficient, which states that the laws of solutions satisfy
the large deviation principle with the good rate function (2.13).
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PROPOSITION 2.4. For arbitrary T > 0 and ug € V, the family of distributions

{E(u“o”\(T))}/\>o satisfies the large deviation principle with the good rate function

LQ7r? (v = S(Tyuo) |2, v — S(T)ug € QA(V),

400, otherwise,

(2.13) 12 (v) =

1 1
where Q. is the pseudoinverse of Q3.

Proof. We define a process Y (t) = u0*(t) — S(t)ug, which satisfies (2.11) with
initial data Y*(0) = 0. This means that Y*(t) = —vAW(t). Then by the large
deviation principle for Gaussian measures (Lemma 2.3), it follows that the good rate
function of {YA(T)}as0 is given by

1 1
sz vl}, v e QH(V),

00, otherwise.

(2.14) D(v) =

In order to give the rate function of {u“*(T)}x>o based on (2.14), we use the defi-
nition of the large deviation principle. Let A € B(V) be closed. Then A — {S(T")uo}
still is closed in B(V) and hence

limsup [Aln P{u"NT) € A}] = limsup [A InP{YNT) € A— {S(T)uo}}]
A

A—0 —0

< — 0@) = — i 0 — = —i o .
< 19(5) = — inf (v~ S(T)uo) =t — inf [ (v)

inf
TEA—{S(T)uo}
In a similar way we can check that for any open B € B(V),

.. ug, A > 0 _ — Uo

llgnjglf [AInP{u">NT) € B}] > 7}2{; Ip(v = S(T)uo) Ulgg I7 (v).
Since I fulfills the same properties as I, i.e., I7° is a good rate function, the proof
is thus completed. 0

Remark 2.5. If () commutes with M, then Q%(V) = Q%(V). In fact, Qr =
[ S(rQS*(r)ydr = TQ.

3. Temporal semidiscretization by stochastic symplectic method. In
this section, we study the semidiscretization in time of (2.2) by a midpoint scheme,
which preserves the stochastic symplectic structure. The temporal semidiscretizations
by a class of stochastic symplectic Runge-Kutta methods have been studied in [6]. It
is shown in there that the methods are convergent with order one in the mean-square
sense, if the solution has regularity in D(M?).

For the time interval [0,T], we introduce the uniform partition 0 = t9 < t1 <
o<ty =T. Let 7 =T/N, and AW" ! = W(t, 1) — W(t,), n=0,1,...,N — 1.
Applying the midpoint scheme to (2.2) in the temporal direction yields

(3.1) u"t ="+ g(Mu” + Muy™thy — AW
which can also be written as

(3.2a) eE"T! = eE" + ~(Vx H" + V x H"") — AW/

T
2
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(3.2b) pH = yH? — %(v x E" +V x EMH1) - AW,

This scheme preserves the stochastic symplectic structure numerically, which is
stated as follows.

PROPOSITION 3.1 (see [6, Theorem 4.3]). Let &, be constants. Under a zero

boundary condition, the temporal semidiscretization (3.1) preserves the discrete sto-
chastic symplectic structure w" ! = fD dE" Tt A dH ldx = fD dE™ N dH"dx =
w", P-a.s.

The divergence conservation laws (1.1c¢) can be preserved numerically by the tem-
poral semidiscretization (3.1).

PROPOSITION 3.2. For the temporal semidiscretization (3.1), ifQ%v € Vg for any
v €V, then for anyn=0,1,...,N — 1,

V- (eE") =V - (eEM), V- (pH") =V . (uHY), P-a.s.

Proof. The proof follows from the identity V- (V x U) =0 for U: R* - R3. 0O

The solution of the temporal semidiscretization (3.1) also has the same regularity
as the exact solution of (2.2) by using embeddings D(My) < H'(D)% and D(MZ) —
H?(D)S. They are stated below without proof.

PROPOSITION 3.3. Under the conditions of Proposition 2.1, the solution of the
temporal semidiscretization (3.1) has regularity in H' (D)%, and

n||p
(33) B 5 e < O+ Elfuollhy,)
where C' depends on T, 6, ||g|lwi. ), |pllwr.~(py, and ||Q%||HS(V’ D(Mo)) -

PROPOSITION 3.4. Under the conditions of Proposition 2.2, the solution of the
temporal semidiscretization (3.1) has regularity in H?(D)®, and

(3.4) s Bl s e < CO1+ Eluollyye),

where C depends on T, 6, |lellwi.y, lellw23py, ullwrepy, llulw2smpy, and
1

HQ2||HS(V, D(M2))*

Let S, = (I—ZM)™' (I+ZM) and T, = (I —3M) . The mild version of
(3.1) reads as

n+1
(3.5) ut = St = TAWT = SP yg — Y SP T IT AW
j=1

LEMMA 3.5. There ezists a positive constant C independent of T such that
I = Tr|l z(piany,vy < CT.

Proof. We define v = T v for any v € D(M), which means that v = v + 7 Mv.
Taking the inner product with ¥ yields $[|[2|3 — [[v[|Z + |[v — v[|3] = Z(MD, D)y = 0.
Hence [[9]|v = | Trv|lv < |Jv]lv leads to || 17| zv,vy < 1.

The conclusion of this lemma is equivalent to [[v — v|ly < C7||v||lp(ar). In fact,
[0 = vllv = 3l|Mvlly = 5[ T-Mvllv < Flvilpan-
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For the semigroups S(t,) and S, we have the following estimates.
LEMMA 3.6. For any integer n € {1,...,N}, there exists a positive constant C
independent of T such that [|S(t,) — S*|| z(pr),v) < CTF12 with k€ {1,2}.

Proof. In order to estimate the error of semigroups, we denote v(t) = S(¢)vg and
v* = SFvg. Then {v(t)}e0,7) is the exact solution of $v = Mwv, v(0) = vy, while
{v*}o<k<n is the solution of v* = vk=1 4 %(ka_l + ka), v? = vy. Note that
v(ty) = v(tp_1) + ftt:_l Mu(s)ds leads to

tk 1 1
ek =eF 1 4 %(Mek_l + Me") —|—/ [Mv(s) — §Mv(tk,1) - §Mv(tk)]ds,

tr—1

where e* = v(t) — v*. Applying (-, e 4+ eF~1)y to both sides of the above equation,
and using the skew-adjoint property of the operator M, we get

tr 1 1
eI = 1413 + [ (aru(s) — S Mulaa ) — SMu(t), 44 as

th—1

1 tr s tr
7/ < Muo(r)dr f/ Mu(r)dr, Me* + M6k71>vds
tr—1 S

2 te—1

(3.6) = M5 -

< leF 1+ O sup o) + max 0413
v oo D) T B D(M)
< e + O ooy

which yields max;<p<n [€¥]lv = maxi<gp<n || (S(tx) — SF) vollv < Cr? llvollp(ary-
On the other hand, based on (3.6),

1 tr S tr
le*11Z = lle* 113 - f/ < Muo(r)dr — Mu(r)dr, Me*F + Mek_1>vds

2 te—1 te—1

1 tr s s T T
= |le* % + 5/ <(/ / —/ / )Mv(g)dfdr, M? (" —|—ek71)>vds
th—1 th—1 Jtk—1 s te—1
< [e* MG + CT*vollBarz).

which yields maxi<ik<N ||€k||v = MaXj<ip<N H (S(tk) — Sf) Uo”v < CTHUOHD(Mz). 0

THEOREM 3.7. Let Q2 € HS(V,D(M*)) and uy € L2(Q;D(M*)) with k €
{1,2}. For the temporal semidiscretization (3.1), we have

(3.7) max (Elluta) —u" 7)< CT2 for ke {1,2},

where C' depends on T, |[uol|2(q;p(a+)), and ||Q%||HS(V"D(Mk)), but is independent
of T and n.

Proof. From the mild solutions (2.5) and (3.5), we use the Itd isometry to get

n t; )
Z/ (S(ty —r) = SPIT,)dW
j=17ti-1

2

2
Ellu(ts) — u"ll} < 2E]|(S(tn) — 57)uol} + 2E

\%

(St —r) — S*IT)Q*2 dr.

HS(V,V)

n t;
— 2B (S(t) — S ol +23 /
j=1"7ti-1
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The first term on the right-hand side is estimated by Lemma 3.6, and the second term
on the right-hand side can be estimated by, for r € [t;_1,;],

|5t = =spom)Qb| < St = 15) (505 =) = D@ sy

[ (S(tn — t5) — Sf_j)Q%HHS(V,V) + ST - TT)Q%”HS(V,V)
1 1
< C7)|Q2 lmsw.py + CT* Q2 | sev by for k € {1,2},

where in the last step, we use Lemmas 3.5-3.6 and [5, Lemma 3.3]. Combining them,
we finish the proof. ]

Applying the midpoint scheme to discretize the system (2.11) with small noise,
we get that u’¥ = SNug — \f)\zyzl SN=IT, AWI. Let Wiy := Z;\f:l SN=IT, AW,
Then it is Gaussian on V with mean 0 and covariance operator Qp,n := Cov(War.n) =
T Zjvzl (Sﬁv_jTT)Q(Siv_jTT)*. Analogously, as in Proposition 2.4, we get the follow-
ing result.

PROPOSITION 3.8. For integer N > 0 and ug € V, the family of distributions
{L (uN; "07)‘)},\>0 satisfies the large deviation principle with the good rate function

(3.8) I%UN(U) _ %” (QT;N)i5 (” - Siv'UO) ”%/7 v — Sivu() € (QT;N)E(V)v
’ 400, otherwise.

1
2

Remark 3.9. If Q commutes with M, then (QT;N) (V) = (TTQ%)(V) C Q%(V).
In fact, Qrny = 70 (SNIT,)Q(SNIT,)" = rNT.QT; = TT,QT} yields the
assertion.

PrOPOSITION 3.10. Assume that Q commutes with M, and v, ug € (TTQ%)(V).
Then there is a constant C' depending on T, ||Q’%UHD(M), and ||Q’%uo||D(M) such
that |13°(v) — I3y (v)| < CT3.

In addition, if Q_%v, Q_%uo € D(M?), then there is a constant C' depending on
T, |Q vlpar2), and [|Q~ Fuo|lparzy such that |13 (v) — Iy (v)| < Cr.

Proof. Note that under the conditions of this proposition,

o) = 5 @t - s, B = g5 0 - s¥w)|

Thus,

(3.9)

I (0) = Ity (v)]|

(@7 (0= S(T)uo) + Q4T (0= 52uo)
Q¥ (0= S(T)up) — QT (v - 5w )|

<Cl|@t (v = 5(Tuo) - QAT (0 - SN uwo)|,

,i'
T

<clletu-m - s, + @ ATt (@) - ¥y ui| ]

where the constant C' depends on T, ||Q~ 2T 0|y, ||Q~ 2T ug|ly. Since I — Tt =
.

=M

oV,

|7t =17 (v = S@w)||, < CUIQTEMullv, Q3 Muglly)r.
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And for the second term on the right-hand side of (3.9),
|@#7t (@) - 82y o,
<|lo * () - ¥y uo|| + 2 @ # 0 (5(T) = 52 o,
<||Q % (@) - ) ||, + €@~ Mugliv)r.

Lemma 3.6 yields the conclusion. ]

4. Spatial semidiscretization by the dG method. In this section, we in-
vestigate the semidiscretization of the stochastic Maxwell equations (2.2) in space by
the dG method with the upwind fluxes, including the properties of the discrete Max-
well operator, the well-posedness of the spatial semidiscretization, the preservation of
the divergence properties in a weak sense, and the mean-square error estimate of the
semidiscrete method in space.

4.1. Discrete Maxwell operator. The notations and properties of the discrete
Maxwell operator are based on [11]. Let 7, = {K} be a simplicial, shape- and
contact-regular mesh of the domain D consisting of elements K, ie., D = [JK.
The index h refers to the maximum diameter of all elements of 7. The dG space
with respect to the mesh 7, is taken to be the set of piecewise linear functions, i.e.,
Vi i=P1(Th)8 := {vn, € L32(D) : wp|x € P1(K)}®, where P;(K) denotes the set of
continuous piecewise polynomials of degree < 1. In general, V;, ¢ D(My). The set of
faces is denoted by G; = G U G, where GI'* and G§** consist of all interior and
all exterior faces, respectively. By np we denote the unit normal of a face F € Gint,
where the orientation of ng is fixed once and forever for each inner face. And for
a boundary face F' € Gi*', np is an outward normal vector. The broken Sobolev
spaces are defined by H*(T;,) := {v € L?(D) : v|g € H¥(K) forall K € T;,}, k €

N, with seminorm and norm being [v[%x 7 ) == Y ger, [Vl7n k) and [0, =
k :
> i—o |v|qu(7h), respectively. Note that H*(D) c H*(Tp,).

Assumption 4.1. Assume that 7, : V — V}, is the orthogonal projection, defined
by, for every v € V,

(4.1) (v — R, up)y =0 for all wy, € Vy,.

Moreover, for all v € H*(T,)® with integer s < 2, it holds that

(4.2) [v—=mnollv < Ch®[v]gs(7;)s

and

(43) Z H’U - Fhv“%z(p)s < Ch2571|’0|%5(7—h)6,
Fegn

where the constant C is independent of h.

Remark 4.2.

(i) For the projection operator 7, in Assumption 4.1, it is not difficult to get
that [[mpollv < [[v]lv.

(ii) Suppose that px = u|x and ex := ¢|x are constants for each K € Ty, then
the usual L2-orthogonal projection 7, on Py(7;,) satisfies Assumption 4.1,
where the projection acts componentwise for vector fields.
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Define by [[v]]F = (vk,)|F — (vk)|F the jump of v on an interior face F' with
normal vector np pointing from K to Kr. The Maxwell operator discretized by a dG
method with the upwind fluxes is defined as follows.

DEFINITION 4.3. Given u, = (E}),HI)", v, = (¥ ,6))" € Vi, the discrete
Mazwell operator My, : V,, — V}, is given as

(Mpup, vp)v = Z ((V X Hp, ¥n)p2xys — (V % Eh7¢h>L2(K)3>

K
+ Z ( np X [[Hpllr, Bk¥k + BrrVKe) L2 (r)s
Fegin
— (np X [Ep]]r, axdx + A Orp) 12(F)s
—yr(nr X [[Ep]lp,nr X [Yn]lr)r2(rys — 0r(nr X [Hp]lp,np X H¢h]]F>L2(F)3)
+ > ((nF X Ep, ¢n)r2(rys — 27r(nr X By, np X ¢h>L2(F)3)7
Fegpxt
where
ax = CKFEKF BK _ CKFIU’KF
CKF€KFJrCKz’:“K7 CKF,LLKF+CK,LLK7
B 1 . 1
o Crptirp +Criig’ F Ckpery +Ckex

with Cg = (5]{#1{)71/2.

The discrete Maxwell operator M}, is also well-defined as an operator from V;, +
(D(M) N H'(T3)®) to Vj, and has the following properties. Here Vj, 4+ (D(M) N
HY(Tp)®) =={on+u: v, € Vy, w € D(M) N H(T;)}. We refer to [11, Lemmas
4.3-4.5] for proofs.

PROPOSITION 4.4.

(i) Foru e D(M)N HY(T)8, we have Mpu = 7, Mu.

(ii) For allup = (E} ,H] )" € V},, we have

(Myun,un)yv =~ ) <7F||np X [En]lrl172(mys + Or[lnF x [[Hh]]FH%z(F)B)
Fegprt
-2 Z 'yFHnF X EhH%Q(FPS 0.
Fegpxt

In particular, M}, is dissipative on V.
(iii) Foru = (ET,H")T € V), + (D(M) N H'(T;)%) and v, = (¥, ,¢,)" € Vp,

we have
(Mpu,vp)y = Z <<H7 V X ) r2rys — (B, V x ¢1L>L2(K)3)
K
+ Z <<5KHKF + BrpHg —vrnp X [[E]lp,nr X [Yn]]F) 12(r)s
Fegint

— (axEBic, + ar, Exc + dpnp x [H])pnp x ([6a]r) 2y )

_ Z (<H,IIF X 'l/)h>L2(F)3+2'YF<nF X E,np x 1/1h>L2(F)3>-
Fegpxt
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4.2. Semidiscrete method in space. After discretizing (2.2) by a dG method
with the upwind fluxes, we end up with the spatial semidiscretization

(4.4) {dUh(t) = Myuy,(t)dt — m,dW (¢),

up(0) = mhuo,

where M), is the discrete Maxwell operator in Definition 4.3, and uy(t) € Vj is an
approximation of the exact solution u(t) € V.

Notice that (4.4) actually is a finite dimensional stochastic differential equation.
In fact, let {¢1,...,¢n,} be a basis for V. Utilizing this basis, the semidiscrete
problem (4.4) in space can be rewritten as, for j =1,..., Ny,

d(un(t), dj)v = (Mpun(t), ¢;)vdt — (¢;, dW (t))v,
(un(0), ¢j)v = (uo, ¢j)v.

Since uy (t) € L2(Q;Vy,), we get up(t) = Zévzhl ug(t)pe. Denoting A = ({¢e, ¢5)v)je €
RN B = ((Myde, dj)v)je € RVWNe u(t) = (upy(t), ... upw, ()T € RV,
uy = ((uo,d1)v, ..., (uo,dn,)v) " € R¥ and W(t) = (W(t),..., W, (0)" €
RM: with Wi, (¢) = (¢;, W(t))v, we obtain the system of stochastic ordinary differ-
ential equations on RV» for (4.4):

(4.5)

(4.6) {Adu(t) — Bu(t)dt — dW(1),

Au(0) = uy.
Notice that the components of W (t) are correlated with

E(Wy (Wi (1) = E ({65, W()v{ge, W()v) = t{Q;. de)v ¥V jil=1,..., Ny

PROPOSITION 4.5. The spatially semidiscrete problem (4.4) is well-posed, i.e.,
there is a unique solution uy, € L*(;C([0,T); Vy)) given by

t
(@.7) un(t) = eMray (0) — / = Mn e 411 (s).
0
Moreover, we have
(4.8) E| sup Huh(t)ll%] < C(1+Euolff),
te[0,T]

where the constant C depends on T and Tr(Q).

Proof. Note that I — M; : V;, — V), is injective and surjective, and thus
Ran(l — M},) = V. Since the discrete operator M), is dissipative on Vy, it gen-
erates a contraction semigroup. Therefore, the unique solution of (4.4) is given by
(4.7).

The estimate in (4.8) is obtained by the triangle inequality and the estimate on
stochastic convolution

E[ sup [lun(t)]3]
t€[0,T]

t 2
§2E{ sup ||echuh(O)H%,] +2E[ sup H/ e(t*S)M’lwde(s)H ]
t€[0,T] tefo,7] " Jo v

1
< 2E[|un (0) [} + 2TE|m2Q* | Fs(v,v) < C(1+ElluolF),

where in the last step we use property ||mpullv < ||u|lv of the projection operator. 0O
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It is not difficult to observe that Wiy, (¢) = f(f elt=)Mnm, AW (s) is Gaussian on
V}, with mean 0 and covariance operator

T
Qr 1= Cov(Warn(T)) :/0 (e ) Qe My ) dr.

Applying the dG method to discretize the spatial direction of the small noise
system (2.11), we denote by {£ (UZU’A(T))}AN) the laws of the semidiscrete solutions.

The asymptotic behavior of {E(uZO’A(T)) }aso is similar to that of {£(u"*(T))}xs0
in Proposition 2.4, which is stated below.

PROPOSITION 4.6. For arbitrary T > 0 and ug € V, the family of distributions
{E(uzo”\(T))}Aw satisfies the large deviation principle with the good rate function
_1 1
%HQT,Z (v — eTM’whuo) 2, v-— eTMngy 1 € Q%h(Vh),

(4.9) 179, (v) =
400, otherwise,

1 1
where Q13 15 the pseudoinverse of Q3. .

4.3. Discrete divergence conservation property. If vy € Vy and Q% €
HS(V,Vy), the exact solution u(t) of the stochastic Maxwell equations (2.2) possesses
the divergence relations (1.1c): V- (¢E(t)) = 0 and V - (¢H(¢)) = 0. However, for the
spatial semidiscretization (4.4), we prove that the divergence relations are preserved
numerically in the following discrete weak sense.

Define the test space X;, C HE(D) as Xj, := {v € C%(D) : vp|x € Po(K), K €
Tn} N HE(D). By (-,-)_1 we denote the duality product between H~1(D) and H}(D)
in which (V- E,¢)_1 = —(E,V¢)2(pys V E € L*(D)?, ¢ € Hy(D).

PROPOSITION 4.7. Letug € Vo and Q2 € HS(V,Vy). The solution (Ey,(t), Hy(t))
of the spatially semidiscrete problem (4.4) satisfiesV t € [0,T], and ¥V ¢ € X,

(V- (eEn(t)), @) -1 = (V - (uH(t)), ¢) -1 = 0, P-a.s.
Proof. For ¢, ¢ € X}, using the definition of the duality product (-,-)_1, we get

<(§ -' (ilﬁfé))))) ’ (i) > = (V- (Bx (1), )1 + (V- (Hp(t)), )1

= —(eEx (), V¢>L2(D)3 — (eHy, (1), V¢>L2(D)3
_ En(t)\ (Vv
() (+2),

Using (4.4) we obtain

En(t)) (Vo\\ _/(Eu0) (Vo ' Eu(s)\ (V¢
() (o)), = () (50), = [ (n (@) (32)), o
e IWe () Vi)
—\™ ,U_lwm(t) "\V¢ V.
For the first and third terms on the right-hand side, we utilize the property (4.1) of

projection and the fact that
Vi
(v8) =
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to get

() 500, (= ) 52, = (i) (50, =
() (520, () 50,

We( ) V) r2pys + (Win(t), V@) L2(p)s
< () > 1_<V WTTL()¢>—1:0.

Using Proposition 4.4(iii), the second term on the right-hand side equals zero, since
for any function ¢ € X}, we have V x Vo = 0, np X [[V¢]|p = 0 for F € Gi* and
n x Vo = 0 on 0D. Therefore, the conclusion of this proposition comes from taking
¢ = 0 or ¢ = 0, respectively. 0

Remark 4.8. The projection of the exact solution of (2.2) has the same property,
Vte[0,T] and V ¢ € Xy,

(V- 7mp(eE(t)), )1 = (V - mp(uH(t)), ¢)—1 = 0, P-a.s.
In fact, since V¢ € P1(75)?, we have (V - m(cE()), ¢) -1 = (ma(cE(t)), V@) 2(p)s =
<8E(ﬁ), V(b)L?(D)?’ = <V . (EE(t)), ¢>,1 =0.
4.4. Error estimate of spatial semidiscretization. To investigate the error

of the spatial semidiscretization (4.4), we apply the projection 7, to the continuous
problem (2.2) and use Proposition 4.4(i) to get

(4.10) dmpu(t) = Mpu(t)dt — mpdW(t), mru(0) = Thug.

We define the error e(t) = up(t) — u(t) = (un(t) — mhu(t)) — (u(t) — mpu(t)) =:
en(t) — ex(t).

The mean-square error estimate of the spatial semidiscretization (4.4) is given in
the following theorem.

THEOREM 4.9. Let u € C([0,T]; L2(Q; H*(D)%)) with k € {1,2} be the solution
of (2.2) and let up, € C([0,T]; L?(;V},)) be the solution of (4.4). Then there is a
constant C independent of h such that sup,¢|o 1) (EHuh(t)—u(t)H%,)% < Chk=z for k €
{1,2}.

Proof. For the part e,(t), by using (4.2), we have
(4.11) Ellex ()7 = Ellu(t) — mu(t)[F < Ch**Elu(t) 3 pye-

For the part ep(t), we subtract (4.10) from (4.4) to get den(t) = Mpen(t)dt —
Mper(t)dt, ep(0) = 0. Then we obtain, for any ¢ € [0, 7],

Flen ) = [ (e (s).en(s))veds = = [ (e (o), en(s)) v

For the term on the right-hand side, noticing ey (s) € Vp, ex(s) € Vi, + (D(M) N
HY(D)®), we use Proposition 4.4(iii) to obtain

<Mheﬂ,€h>v = Z <<67I;I,V X €E>L2(K)3 - <€£, V x SI];I>L2(K)3)
K
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+ Y (Bt + Brret = ypnp x (Bl mp x [eF]l)racmy
Fegppt

— (agel g, +agpey o+ 0pnp x ]| p,np X HehHHF>L2(F)3>

— Z <<67I;I,np X eE>L2(F)3+2'YF<nF X eE,nF X BE>L2(F)3)7
Fegp

where e, = ((eE)T, (eH)T)T and e;, = ((e],;:)—r, (eI,f)T)T. The property of the pro-

™ s
jection m, leads to (eF,V x ef)r2(x)s = (eE,V X efl)[2(x)s = 0. Then using the
Cauchy—Schwarz and Young’s inequalities, we have

[(Myex(s),en(s))v| < D vrllng x efl|32 s
Fegprt

ola oF
o 5 (e x [Flr sy + Ll x (el )
Feg;‘Lnt

+ 2 (8B + Brpetiic = rnr x [l ey
Fegint

(4.12) —llaxer k, + arp X x +ornp x HeﬂH]]FHsz(F)a)

25

+ 2 (Gl sy + 2veline x cElaey)

(Mpen(s), en(s))v + CP** " u(s) [ Fe s

where in the last step, we use the equality in (ii) of Proposition 4.4 and the inequality
(4.3). Hence, we have

1 1 t t
len s =5 [ Vw9 en(@hvds < OH [ u)i pods.

Proposition 4.4(ii) yields that the second term on the left-hand side is nonnegative.
Then taking the expectation and using Lemmas 2.1 and 2.2, we get sup,¢(o.71 Ellen (?) I

< Ch2k-1 f Elu(s)|3; (pysds, which combined with (4.11) completes the proof. O

5. Full discretization of stochastic Maxwell equations. In this section, we
consider the full discretization of stochastic Maxwell equations (2.2) by applying the
midpoint scheme in time and the dG method with the upwind fluxes in space:

(5.1) uptt =g+ = (Mhuh + Mpup ) — m, AW

with u?L = mpug. Utilizing the basis of V}, in section 4, the fully discrete method (5.1)
can be rewritten as the midpoint scheme for (4.6),

Au™t! = Au” + g(Bu” + Bu"“) — AW"TL

Following the proof of Proposition 4.7, the divergence conservation property (1.1c)
is preserved numerically by the solution of (5.1) in a weak sense.
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PROPOSITION 5.1. Let ug € Vo and Q% € HS(V, Vo). The solution {uf}o_, -y
of the fully discrete method (5.1) satisfies V. n € {0,1,...,N} andV ¢ € Xp,

(V- (eE}), ¢)—1 = (V- (uH}),¢)_1 = 0, P-a.s.

Proof. For ¢, ¢ € X}, using the definition of the inner product (-, )_1, we get

< (g-l ((ig%i))) ’ (Zﬁ) >1 = (V- (B}, ¢) 1 + (V- (H ), 6) 4

B EZ—H vw
- HZ+1 ) v¢ . .
Using (5.1) we obtain

() (500, = (G- (30)), 5 (o (a2 ) (52))
H )2\ Vo v HY ) \Ve¢)/, 2 H! +H™' )"\ Vo v
7 eTlAWRF! Vi
Th M—lAW#{{-l ’ v¢ . .
Using Proposition 4.4(iii), the second term on the right-hand side equals zero, since

for any function ¢ € Xj, we have V x Vo = 0, np x [Vy]|p = 0 for F € Gi"*, and
n x Vo = 0 on 9D. For the third term on the right-hand side, the property of the

projection (4.1), and the fact that
Vo
(v8) =
yield

SIAWPTYY (V\\ / (eTTAWRH (Vi
Th u—lAW[rLLJrl \ve Y = /JilAW,:;Jrl "\ Ve v
= (V- (AW, 0) o1 — (V- (AW, ¢) 1 = 0.

Thus,

() (52), = () (o)), == () (R2), -

where in the last step, we use

() (2)), = (= () -(32)), = (&) (32)), -

Therefore the conclusion of this proposition comes from taking ¢ = 0 or ¢p = 0,
respectively. ]

The mild version of the full discretization (5.1) can be rewritten as
(5.2) ’U,Z—H = Sprup — Thﬂ—Tl'hAWnJ'_l,

where Ty, = (I — ZMy) "' and Sy = (I — ZMy) " (I + 5 My,).
LEMMA 5.2. For operators Ty » and Sy » on Vy,, the following estimates hold:
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W) N Th,rll v, viy < 1-

(1) [ISh lleenvn) <1 for any 0 <n < N.

Proof. To prove assertion (i), we define v = T} ;v for any v € Vj, which means
that v = v + § M}v. Taking the inner product with v yields

11~ ~ T JU

S (1313 = el + 15 = vl ] = Z (v, 3y < 0.
Hence |[t|lv = [|Th,7v|lv < ||v|lv leads to assertion (i).
Similarly, to prove assertion (ii), we define v} = Sy, ;v for any v € Vj,, which

means that v¢ = v 1+ Z(Muo! =t + Mpot), ¢ = 1,2,...,n, with v9 = v. Taking
h h 2 h h h
the inner product with (vi ' + vf) yields ||vf[|Z — [vs |2 < 0, and thus |jvf|ly <
Vg < oo < 100ly = ||vllv. This leads to assertion (ii). o
h h

PROPOSITION 5.3. There exists a constant C independent of h and T such that

Ellu?|2 < C(1+E 2).
Jmax, lupllZ < C(1 + Elluoll¥)

Proof. From (5.2), we know that u} = S}T;,L7T7Thu0_z?:1 S}?;jThﬂ-ﬂ'hAWj. Taking
the || - ||v-norm on both sides of the above equation and using the triangle inequality,
we get

n . ) 2
Ellagly < 2E|IS5 mnuol + 2B|| Y S T sm AW |
j=1

< 2E||mpuo3 +2 ) E ||ma AW ||§, < 2E o[y + 2T Tr(Q),
=1

which completes the proof. O

N oN—j ; o . .
Let War.np i= ZFl Sy - ITy, -7, AWY. Then it is Gaussian on Vj, with mean 0
and covariance operator

N
Qrinh = Cov(War,nn) =T Z (S]{xq-_jTh,‘rﬂ—h)Q(S}]x;jTh,-rTrh)*-
=1

Applying the fully discrete method to the small noise system (2.11), we denote
by {L (u,]y;uo’)‘) }aso the laws of the full discretizations. The asymptotic behavior of
{E(uljj;uo’/\) }aso is similar to that of {£(u“0*)} 5 in Proposition 3.8, which is
stated below.

PROPOSITION 5.4. For integer N > 0 and ug € V, the family of distributions
{L(ufj; UO’A)}A>0 satisfies the large deviation principle with the good rate function
(5.3)

1
I% (v) = %H (QT;N,h) 2 (U - S;JXTWhuo) ||%/, U= S,]XTwhuo € (QT;N,h)
o 400, otherwise.

Nl

V),

5.1. Error estimate of full discretization. The error u} — u(t,) is divided
into uy —u(t,) = (uff —u™)+ (u” — u(ty)) , where the second term on the right-hand
side is the error in temporal direction, which has been studied in Proposition 3.7.
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Hence we only need to consider the error uj — u™. By inserting the term mpu”, we
get up —u” = (up — mpu”) + (mpu™ —u”) =: e} + el
Note that (4.2) and Propositions 3.3-3.4 yield that, for k € {1,2},
1 1 . 1
(Ellez13)* < CR* (Bl 3npye ) < Ch* (1+ Elluolldagy)) -

The estimate of error e} is stated in the following theorem.

THEOREM 5.5. Let {u", 0 < n < N} in L?(Q; H*(D)) with k € {1,2} be the
solution of (3.1) and let {ull, 0 < n < N} in L2(;V},) be the solution of (5.1).
Then there is a constant C independent of h and T such that

1
(5.4) max (]E||e’,}H§,)2 < COW*=%  fork e {1,2).

0<n<N

Proof. We apply the projection 7, to the temporal semidiscretization (3.1) and
use Proposition 4.4(i) to get

(5.5) mput = mu + % (Mhu” + Mhu"H) — TR AW

Subtracting (5.5) from (5.1) yields,

(5.6) et =ep + % (Mpep + Mpepth) + % (Mpel + Mpethy.
n+1

Applying (-, e}l + e, ")y, we obtain

(5.7)
T T
5113 = eRlly = 3 (Ma(eh + ety e + ey + 2 (Ma(e + e ), e + et

For the second term on the right-hand side of (5.7), we use (4.12) to get
1
(M (e +exth), i+ ep ™) < = S{Mp(efy + e ™) el + e )y
+ C’h%*lHu” + Un+1||2H’€(D)6.

Hence (5.7) becomes

n n T n n n n — n n

e 1% = ekl < 5 (Ma (e, +ei™") ek +eh v + CTh** Hu™ 4+ u™ |3 -

Proposition 4.4(ii) leads to (Mp(e} + e} ™), el + e} ™)y <0, and thus

Bl 13~ Eleh < Orh?E (Il ppo + I igu pye ) < Crh?*.

Gronwall’s inequality yields the conclusion. 0

Combining error estimates in temporal and spatial directions, we finally obtain
the error estimate for the full discretization (5.1).

THEOREM 5.6. If the assumptions of Theorems 5.5 and 3.7 are satisfied, then the
fully discrete error uy —u(ty) is bounded by

(Elluf — u(t)|2)? < COr¥ + ChRE=%  for ke {1,2},

where the constant C' is independent of h and 7.
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